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a b s t r a c t

The coupled thermoelstic vibration characteristics of the axially moving beam are

investigated. The differential equation of motion of the axially moving beam under the

thermoelastic coupling is established based to the equilibrium equation and the thermal

conduction equation involving deformation term. The eigenequation is deduced and the

conditions under the coupled thermoelastic case are calculated by the differential

quadrature method. The curves of the real parts and imaginary parts of the first three-

order dimensionless complex frequencies versus the dimensionless axially moving

speed are obtained. The effects of the dimensionless coupled thermoelastic factor, the

ratio of length to height, the dimensionless moving speed on the stability of the beam

are analyzed.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The vibration of the axially moving beams is of considerable interest in many fields. Some examples of the engineering
applications include, such as aerial lifter, transmission belt, magnetic tape, band saw and weave fiber. Most of the
investigations concerned the transverse vibration characteristics and dynamical behaviors of an axially moving beam.
Simpson [1] studied the natural frequencies of the axially moving beam with clamped boundary by the eigenvalue method.
Chakraborty and Malik [2] analyzed the linear and nonlinear free vibration of the axially moving beam with simply
supported by wave propagation. Kong and Parker [3] researched the free vibration of the axially moving beam with small
flexural stiffness, the asymptotic solutions of natural frequencies are obtained by the perturbation method of algebraic
equation. Yang [4] studied the natural frequencies of axially moving beams by the method of multiple scales. The above
mentioned researches are all in the stable temperature field, the impacts of temperature changes are ignored. But in the
actual engineering systems, the impacts of temperature changes need to be taken into consideration. The bending of the
beam is inevitably affected by the temperature changes in the elastic vibration, the vibration characteristics and dynamics
of the beam will be changed due to the variation of the temperature [5,6]. For this reason, the research of the coupled
thermoelastic vibration characteristics for the engineering system components has become a new research field. Owing to
the temperature field and the displacement field coupled existed, the thermal conduction equation involving the
deformation term and the motion equation must be coupled solved. Chang and Wan [7] studied the nonlinear coupled
thermoelastic vibration of the isotropic rectangular thin plate under all kinds of boundary conditions by the Berger
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assumption. Houston and Photiadis [8] studied the importance of thermoelastic damping for silicon-based MEMS. Eslami
and Shakeri [9] analyzed the coupled thermoelastic problems based on the first-order shell theory of the Love assumption.
Copper and Pilkey [10] presented a thermoelastic solution technique for beams with arbitrary quasi-static temperature
distributions that create large transverse normal and shear stresses. Guo and Rogerson [11] studied the thermoelastic
coupling in a doubly clamped elastic prism beam and examined its size-dependence. Sun [12] studied the thermoelastic
damping in micro-beam resonators, the results show that the natural frequencies under the thermoelastic coupling are
greater than that in case of the uncoupling.

In this paper, the coupled thermoelastic problems of the axially moving beam are studied under the coupled
thermoelastic case, the governing equation of thermoelastic coupling Bernoulli–Euler beam is established based on the
generalized thermoelastic theory and vibration theory. The eigenequation is obtained, and the dimensionless complex
frequencies of the axially moving beam are calculated by the differential quadrature method. The coupled thermoelastic
vibration characteristics of the axially moving beam and the effects of the dimensionless coupled thermoelastic factor, the
ratio of length to height r and the dimensionless moving speed on the dynamic stability of the coupled thermoelastic
axially moving beam are analyzed.

2. Coupled thermoelastic differential equation of axially moving beam

Consider an elastic rectangular beam moving with constant speed n in the x direction, as shown in Fig. 1. The beam has
the length L, width b and thickness h in the x, y and z directions, respectively, the density of the material is r, the Young’s
modulus is E.

Denote the initial temperature of the beam as t0 ¼ t(x,z,t0), the temperature of the instantaneous t is t1 ¼ t1(x,z,t), so
the temperature changes of the beam is T ¼ t1�t0. The one-dimensional constitutive equation of the beam is

sx ¼ �Ez
d2w

dx2
� EaT T (1)

where w ¼ w(x,t) is the displacement in the z direction; aT is the coefficient of linear thermal expansion.
The bending moment of the cross-section is

M ¼ �

Z h=2

�h=2
bsxz dz ¼ bE

Z h=2

�h=2

q2w

qx2
z2 dzþ bEaT

Z h=2

�h=2
Tz dz ¼ EI

q2w

qx2
þMT (2)

where I ¼ bh3/12 is the inertia moment of the cross-section; MT ¼ bEaT
R h=2
�h=2

Tz dz is the thermal moment.
The equilibrium equation of axially moving beam is [13]

q2M

qx2
þ rA

q2w

qt2
þ 2v

q2w

qxqt
þ v2 q

2w

qx2

 !
¼ 0 (3)

where A ¼ bh is the area of the cross-section.
Substituting Eq. (2) into Eq. (3), we can get the thermoelastic equilibrium equation of the beam as follows:

EI
q4w

qx4
þ
q2MT

qx2
þ rA

q2w

qt2
þ 2v

q2w

qxqt
þ v2 q

2w

qx2

 !
¼ 0 (4)

The thermal conduction equation containing the coupled thermoelastic term [14] is

qT

qt
� a

q2T

qx2
þ
q2T

qz2

 !
þ

EaTt0

rcv

q
qt
�z

q2w

qx2

 !
¼ 0 (5)

where a ¼ k/rcv is thermal diffusivity; k is the thermal conductivity; cv is the specific heat at constant volume.
Assuming that there is heat exchange between the upper and lower surfaces of the beam between the surrounding, they

belong to convection boundary conditions. The thermal boundary conditions on the upper and lower surfaces of the beam
are defined as

k
qT

qz

� �
z¼h=2

¼ H½Te � ðTÞh=2� k
qT

qz

� �
z¼�h=2

¼ �H½Te � ðTÞ�h=2� (6)
y

z v

L

b
x

Fig. 1. Axially moving beam in the temperature field.
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where Te is the surrounding temperature changes, and Te ¼ 0; (T)h/2 and (T)�h/2 denote the temperature changes of the
upper and lower surface, respectively; H is the coefficient of the heat exchange by convection, the temperature of the other
edges are constant, then

@T

@z

� �
z¼h=2

¼ �
H

k
ðTÞh=2

@T

@z

� �
z¼�h=2

¼
H

k
ðTÞ�h=2 (7)

Assuming that the temperature varies linearly in the direction of the z axis, one has

T ¼
½ðTÞ�h=2 þ ðTÞh=2�

2
þ
½ðTÞh=2 � ðTÞ�h=2�

h
z (8)

Introducing Eq. (8) into Eq. (2), the thermal moment MT becomes

MT ¼ bEaT

Z h=2

�h=2
Tz dz ¼

EaT bh2

12
½ðTÞh=2 � ðTÞ�h=2� (9)

Multiplying Eq. (5) by bEaTz, and integrating it with respect to z from �h/2 to h/2, yields

bEaT

Z h=2

�h=2

qT

qt
z dz� abEaT

Z h=2

�h=2

q2T

qx2
z dz� abEaT

Z h=2

�h=2

q2T

qz2
z dz�

E2a2
Tt0

rcv
b

Z h=2

�h=2
z2 q3w

qx2qt
dz ¼ 0 (10)

Substituting Eq. (9) into Eq. (10), one obtains

qMT

qt
� a

q2MT

qx2
� abEaT

Z h=2

�h=2

q2T

qz2
z dz�

E2a2
Tt0I

rcv

q3w

qx2qt
¼ 0 (11)

Consider the Eq. (8) and Eq. (7), abEaT
R h=2
�h=2
ðq2T=qz2Þz dz in the Eq. (11) can be expressed as

abEaT

Z h=2

�h=2

q2T

qz2
z dz ¼ abEaT z

qT

qz

� �h=2

�h=2
� ðTÞ

h=2
�h=2

" #

¼ abEaT
Hh

2k
þ 1

� �
½ðTÞ�h=2 � ðTÞh=2� ¼ �

12a

h2

Hh

2k
þ 1

� �
MT (12)

Substituting Eq. (12) into Eq. (11), we can get the thermal conduction equation of the beam as follows:

qMT

qt
� a

q2MT

qx2
þ

12a

h2

Hh

2k
þ 1

� �
MT �

E2a2
Tt0I

rcv

q3w

qx2qt
¼ 0 (13)

Now the governing equations for the coupled thermoelastic problem can be obtained by Eq. (4) and Eq. (13) as follows:

EI
q4w

qx4
þ
q2MT

qx2
þ rA

q2w

qt2
þ 2v

q2w

qxqt
þ v2q

2w

qx2

 !
¼ 0

qMT

qt
� a

q2MT

qx2
þ

12a

h2

Hh

2k
þ 1

� �
MT �

E2a2
Tt0I

rcv

q3w

qx2qt
¼ 0

8>>>>><
>>>>>:

(14)

For the convenience, the dimensionless quantities are introduced as follows:

x ¼
x

L
; r ¼

L

h
; W ¼

w

h
; t ¼

ffiffiffiffi
E

r

s
t

L
; MT ¼

MT

EAh
; c ¼

ffiffiffiffi
r
E

r
v (15)

where W is the dimensionless deflection, MT is the dimensionless thermal moment.
Substituting Eq. (15) into Eq. (14), we can transform Eq. (14) into the dimensionless form

A1
q4W

qx4
þ
q2MT

qx2
þ
q2W

qt2
þ 2c

q2W

qxqt
þ c2q

2W

qx2
¼ 0

A2
qMT

qt
�
q2MT

qx2
þ A3MT � A4

q3W

qx2qt
¼ 0

8>>>>><
>>>>>:

(16)

where A1 ¼1/12r2, A2 ¼ L=a
ffiffiffiffiffiffiffiffiffi
E=r

p
, A3 ¼ ð12L2=h2

ÞððHh=2kÞ þ 1Þ, A4 ¼ ðlh2=12LaÞ
ffiffiffiffiffiffiffiffiffi
E=r

p
, l ¼ Ea2

Tt0=rcv is the dimensionless
coupled thermoelastic factor.
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In order to analyze the vibration characteristics of the beam, we may assume that all quantities change harmonically in
Eq. (16), i.e.

Wðx; tÞ ¼WðxÞ ejot (17)

MT ðx; tÞ ¼ Mn
T ðxÞ e

jot (18)

where j ¼
ffiffiffiffiffiffiffi
�1
p

, o is the dimensionless complex frequencies of the coupled thermoelastic axially moving beam.
Substituting Eqs. (17) and (18) into Eq. (16), yields

A1
d4W

dx4
þ

d2M�T

dx2
�o2WðxÞ þ 2cjodW

dx
þ c2d2W

dx2
¼ 0

A2M�T ðxÞjo�
d2M�T

dx2
þ A3M�T ðxÞ � A4jod2W

dx2
¼ 0

8>>>>><
>>>>>:

(19)

The both ends of the beam, is assumed to be thermally insulated, so the different boundary conditions of the beam are

Clamped beam :

Wjx¼0 ¼Wjx¼1 ¼ 0

dW

dx

����
x¼0
¼

dW

dx

����
x¼1
¼ 0

M�T jx¼0 ¼ M�T jx¼1 ¼ 0

8>>>><
>>>>:

(20)

Simply supported beam :

Wjx¼0 ¼Wjx¼1 ¼ 0

d2W

dx2

�����
x¼0

¼
d2W

dx2

�����
x¼1

¼ 0

M�T jx¼0 ¼ M�T jx¼1 ¼ 0

8>>>>><
>>>>>:

(21)

Hinged-clamped beam :

Wjx¼0 ¼
d2W

dx2

�����
x¼0

¼ 0

Wjx¼1 ¼
dW

dx

����
x¼1
¼ 0

M�T jx¼0 ¼ M�T jx¼1 ¼ 0

8>>>>>>><
>>>>>>>:

(22)

To solve Eq. (19), M�T can be derived as follows:

M�T ¼

o2WðxÞ þ A4
d2W

dx2
jo� 2c

dW

dx
jo� c2d2W

dx2
� A1

d4W

dx4

A2 joþ A3
(23)

We obtain the second derivative of Mn
T from Eq. (23), and introduce it into the first equation in the Eq. (19), yields

� A1
d6W

dx6
þ ðA3A1 � c2 þ A1A2 joþ A4 joÞd

4W

dx4
� 2c jod3W

dx3

þ ðA3c2 þ A2c2 joþo2Þ
d2W

dx2
þ ð2cA3 jo� 2A2co2Þ

dW

dx
� ðA3o2 þ A2 jo3ÞWðxÞ ¼ 0 (24)

Substituting Eq. (23) into Eqs. (20), (21) and (22), the boundary conditions become

Clamped beam :

Wjx¼0 ¼Wjx¼1 ¼ 0

dW

dx

����
x¼0
¼

dW

dx

����
x¼1
¼ 0

�A1
d4W

dx4
þ ðA4 jo� c2Þ

d2W

dx2

�����
x¼0

¼ 0

�A1
d4W

dx4
þ ðA4 jo� c2Þ

d2W

dx2

�����
x¼1

¼ 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(25)
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Simply supported beam :

Wjx¼0 ¼Wjx¼1 ¼ 0

d2W

dx2

�����
x¼0

¼
d2W

dx2

�����
x¼1

¼ 0

�A1
d4W

dx4
� 2c jodW

dx

�����
x¼0

¼ �A1
d4W

dx4
� 2c jodW

dx

�����
x¼1

¼ 0

8>>>>>>>><
>>>>>>>>:

(26)

Hinged-clamped beam :

Wjx¼0 ¼
d2W

dx2

�����
x¼0

¼ 0

Wjx¼1 ¼
dW

dx

����
x¼1
¼ 0

�A1
d4W

dx4
� 2c jodW

dx

�����
x¼0

¼ 0

�A1
d4W

dx4
þ ðA4 jo� c2Þ

d2W

dx2

�����
x¼1

¼ 0

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(27)
3. Differential quadrature method

Differential quadrature method [15] (DQM) virtually is a method in which the derivatives of the function at the given
nodes are approximately described by weighted sums of the function at the total nodes.

Consider a function of one variable f(x), it is continuously differentiable in the interval [a,b]. There is a formula

Lff ðxÞg ¼
XN
j¼1

WjðxÞf ðxjÞ (28)

where L is the linear differential operator, Wj(x) is the interpolation basis functions, xj is the coordinate value of the node j
in the different nodes a ¼ x1ox2o � � �oxN ¼ b. If L ¼ d/dx, Aij ¼WjðxiÞ and f j ¼ f ðxjÞ, then

f 0i ¼
XN
j¼1

Aijf j ði ¼ 1;2; . . . ;NÞ (29)

Aij is the weight coefficients of the first derivative of f(x).
Assuming that f ½k�

i
¼ f ½k�ðxiÞ ði ¼ 1;2; . . . ;NÞ, the higher-order derivatives of the points can be obtained through the

function value of the points interpolate as

f ½2�
i
¼
XN
j¼1

Bijf j; f ½3�
i
¼
XN
j¼1

Cijf j; f ½4�
i
¼
XN
j¼1

Dijf j; f ½5�
i
¼
XN
j¼1

Eijf j; f ½6�
i
¼
XN
j¼1

Fijf j (30)

where Bij, Cij, Dij, Eij and Fij are the weight coefficients of the first, second, third, fourth, fifth and sixth derivative of f(x).
According the interpolation principle, the weight coefficients of the differential quadrature method are obtained by the

differential coefficient of the Lagrange interpolation polynomial on the nodes. Aij can be expressed

Aij ¼

QN
k¼1
kai;j

ðxi � xkÞ

,QN
k¼1
kaj

ðxj � xkÞ ði; j ¼ 1;2; . . . ;N; iajÞ

PN
k¼1
kai

1

ðxi � xkÞ
ði; j ¼ 1;2; . . . ;N; i ¼ jÞ

8>>>>>>><
>>>>>>>:

(31)

After the Aij is determined, Bij, Cij, Dij, Eij and Fij can be expressed as follows:

Bij ¼
PN

k¼1
AikAkj; Cij ¼

PN
k¼1

BikAkj; Dij ¼
PN

k¼1
CikAkj

Eij ¼
PN

k¼1
DikAkj; Fij ¼

PN
k¼1

EikAkj

8>>>><
>>>>:

ði; j ¼ 1;2; . . . ;NÞ (32)
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The beam with simply supported adopts the weight coefficient method to treat the boundary conditions, and the
clamped beam adopts the d method to treat the boundary conditions. The distribution forms of the nodes are

z1 ¼ 0; zN ¼ 1; zi ¼
1

2
1� cos

2i� 3

2N � 4
p

� �� �
ði ¼ 2;3; . . . ;N � 1Þ

Z1 ¼ 0; Z1 ¼ d; ZN�1 ¼ 1� d; ZN ¼ 1; Z1 ¼
1

2
1� cos

i� 2

N � 3
p

� �� �
ði ¼ 3;4; . . . ;N � 2Þ

8>>><
>>>:

(33)

Then Eq. (24) can be rewritten in the differential quadrature form as

A3A1

XN
k¼1

DikWk � c2
XN
k¼1

DikWk � A1

XN
k¼1

FikWk þ A3c2
XN
k¼1

BikWk

þ A1A2

XN
k¼1

DikWk þ A4

XN
k¼1

DikWk � 2c
XN
k¼1

CikWk þ 2cA3

XN
k¼1

AikWk þ A2c2
XN
k¼1

BikWk

" #
jo

þ
XN
k¼1

BikWk � A3Wk � 2A2c
XN
k¼1

AikWk

" #
o2 � A2 jWko

3 ¼ 0 ði ¼ 2;3 . . .N � 1Þ (34)

The differential quadrature forms of boundary conditions (25), (26) and (27) are

Clamped beam :

W1 ¼WN ¼ 0

PN
k¼1

A2kWk ¼
PN

k¼1
AðN�1ÞkWk ¼ 0

�A1
PN

k¼1
D3kWk þ ðA4 jo� c2Þ

PN
k¼1

B3kWk ¼ 0

�A1
PN

k¼1
DðN�2ÞkWk þ ðA4 jo� c2Þ

PN
k¼1

BðN�2ÞkWk ¼ 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(35)

Simply supported beam :

W1 ¼WN ¼ 0

PN
k¼1

B2kWk ¼
PN

k¼1
BðN�1ÞkWk ¼ 0

�A1
PN

k¼1
D3kWk � 2c jo

PN
k¼1

A3kWk ¼ 0

�A1
PN

k¼1
DðN�2ÞkWk � 2c jo

PN
k¼1

AðN�2ÞkWk ¼ 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(36)

Hinged-clamped beam :

W1 ¼
PN

k¼1
B2kWk ¼ 0

WN ¼
PN

k¼1
AðN�1ÞkWk ¼ 0

�A1
PN

k¼1
D3kWk � 2c jo

PN
k¼1

A3kWk ¼ 0

�A1
PN

k¼1
DðN�2ÞkWk þ ðA4 jo� c2Þ

PN
k¼1

BðN�2ÞkWk ¼ 0

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(37)

Eq. (34) and one of the boundary conditions (35), (36) or (37) can be written in the matrix form as

½Kdd� ½Kde�

½Ked� ½Kee�

 !
fydg

fyeg

 !
þo

0 0

½Ged� ½Gee�

 !
fydg

fyeg

 !
þo2

0 0

½Red� ½Ree�

 !
fydg

fyeg

 !
þo3

0 0

0 ½I�

 !
fydg

fyeg

 !
¼

0

0

� �
(38)
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Table 1
The first three order dimensionless natural frequencies of the beam under the ambient temperature.

Boundary condition o1 o2 o3 l

Clamped 0.6458 1.7802 3.4904 0 (Existing results [12])

0.6458 1.7798 3.4839 0 (Present solution)

0.6741 1.8577 3.6260 0.02

0.7188 1.9791 3.8270 0.05

Simply supported 0.2849 1.1396 2.5639 0 (Existing results [12])

0.2849 1.1397 2.5656 0 (Present solution)

0.2974 1.1896 2.6780 0.02

0.3171 1.2684 2.8554 0.05

Hinged-clamped 0.4451 1.4391 2.9329 0

0.4646 1.5021 3.0611 0.02

0.4952 1.5867 3.1535 0.05

Fig. 2. The first three dimensionless complex frequencies vs. the dimensionless axially moving speed (r ¼ 20, l ¼ 0).

X.-X. Guo et al. / Journal of Sound and Vibration 325 (2009) 597–608 603
where the subscript d denotes elements associated with the boundary points, while e is the remainder, namely

fydg ¼ fy1; y2; yN�1; yNg
T

fyeg ¼ fy3; y4; . . . ; yN�3; yN�2g
T (39)

{yd} is eliminated from the Eq. (38), then

fo3½I� þo2½R� þo½G� þ ½K�gfWkg ¼ f0g (40)

where the matrix [K], [G], [R] and [I]([I] is a N�N identity matrix when adopts the weight coefficient method to treat the
boundary conditions, while adopts the d method to treat the boundary conditions [I] is a (N�4)� (N�4) identity matrix),
involve several parameters, such as dimensionless axially moving speed c, the dimensionless coupled thermoelastic factor,
the ratio of length to height r and so on. Eq. (40) is a generalized eigenvalue problem. Then, the eigenequation of the
coupled thermoelastic axially moving beam is

jo3½I� þo2½R� þo½G� þ ½K�j ¼ 0 (41)

Therefore, one can compute the eigenvalue numerically from Eq. (41) and the natural frequency of the beam with various
parameter values.
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Fig. 3. The first three dimensionless complex frequencies vs. the dimensionless axially moving speed (r ¼ 20, l ¼ 0.1).

Fig. 4. The first mode dimensionless complex frequencies vs. the dimensionless axially moving speed (r ¼ 10).

X.-X. Guo et al. / Journal of Sound and Vibration 325 (2009) 597–608604
4. Results and discussions

Numerical studies have been conducted to investigate the effects of several key parameters on the dynamics and stabilities
of the coupled thermoelastic axially moving beam. The first three-order natural frequencies of the axially moving beam with
different boundary conditions under the c ¼ 0, r ¼ 10 and the different values of l were calculated, and the results agree with
those exhibited in Ref. [12] under the l ¼ 0, which can be seen from Table 1. Here the node number N ¼ 11.
4.1. Clamped beam

Fig. 2 shows the variation of the first three-order dimensionless complex frequencies of the beam with the
dimensionless moving speed for r ¼ 20, l ¼ 0. It can be seen that, when the dimensionless moving speed c ¼ 0, the
dimensionless complex frequency o is a real number. With the increase of moving speed, the real part of o decreases,
while it’s imaginary part remains zero. When the moving speed increases to the critical value c ¼ 0.091, the real part of the
o in the first-order mode becomes zero, subsequently Re(o) ¼ 0, but Im(o)40 and Im(o)o0 occur, which shows that
the first-order mode becomes unstable by the divergence instability when the moving speed becomes equal or larger than
the lowest critical moving speed c ¼ 0.091, the lowest critical moving speed is called the divergence speed. For
0.091oco0.125, the first-order mode is unstable with divergence instability, while the second-order mode and the third-
order mode keep stable. When moving speed further increases to c40.125 the beam regains stability in the first-order
mode. After the beam regains stability, in the case of 0.142oco0.16, the real parts of the first and second-order complex
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Fig. 5. The first three dimensionless complex frequencies vs. the dimensionless axially moving speed (r ¼ 10, l ¼ 0).

Fig. 6. The first three dimensionless complex frequencies vs. the dimensionless axially moving speed (r ¼ 10, l ¼ 0.1).
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frequencies merge to each other and keep positive, while their imaginary parts become two branches with positive and
negative values, it indicates that the first-order mode couples the second-order mode, that is the beam undergoes coupled-
mode flutter.

Fig. 3 indicates that the variation of the first three-order dimensionless complex frequencies of the beam with the
dimensionless moving speed for r ¼ 20, l ¼ 0.1. By contrast with Fig. 2, it can be seen that when the dimensionless moving
speed c ¼ 0, the dimensionless complex frequency o is also a real number, but they are greater than the values under the
l ¼ 0 case. The critical speed value of the first-order mode increases to c ¼ 0.135 in the Fig. 3, and the beam regains
stability in the first-order mode until to the dimensionless moving speed c ¼ 0.188. With the increases of the dimensionless
moving speed, the first-order mode couples the second-order mode happened.

Fig. 4 shows that the variation of the first-order mode dimensionless complex frequencies of the beam with the
dimensionless moving speed for r ¼ 10 and the different values of l. It indicates that the real part of the first-order mode
complex frequency increases with the increase of the dimensionless coupled thermoelastic factor when the dimensionless
moving speed in the same. The first-order mode behaves divergent instability at the c ¼ 0.182 under the l ¼ 0. The critical
speed of the first-order mode increases with the dimensionless coupled thermoelastic factor l. In contrast with Fig. 2, the
real part of the first-order complex frequency under r ¼ 10 is greater than that in the case of r ¼ 20.
4.2. Simply supported beam

Figs. 5 and 6 give the variation of the first three-order dimensionless complex frequencies of the beam with the
dimensionless moving speed for r ¼ 10, l ¼ 0 and l ¼ 0.1, respectively. In the Fig. 5 one can see that when co0.092, the real
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parts of the complex frequencies are reduced until the moving speed increased to the lowest critical moving speed
c ¼ 0.092. Thus, if the moving speed is kept below the lowest critical moving speed, the first three-order mode is always
stable. It can be observe that only the real part of the first-order complex frequency becomes zero as the moving speed
reaches the lowest critical moving speed while its imaginary part of the first-order complex frequency turns to two
different values, it means that the first-order mode becomes unstable. For 0.092oco0.1803, the first-order mode behaves
divergence instability, while the second and the third-order mode keep stable. For 0.1803oco0.2483, the real part of the
first-order complex frequency increases while the second and the third keep positive. It is noted that the two values of the
imaginary part of the first-order complex frequency merge to each other at c ¼ 0.1803, the critical moving speed at which
the flutter instability occurs in the first mode. This implies in the range 0.1803oco0.2483, the second and third modes are
always stable, and the first-order mode undergoes flutter instability. However, for 0.2483oco0.25, the real part of the
second-order complex frequency becomes zero, its imaginary part turns to two different values. Physically this implies that
the second-order mode becomes unstable by the divergence instability.

In contrast with Fig. 2, the phenomenon of the first-order mode and second-order mode couple no appear, but the first-
order mode and the second-order mode undergo the single-mode flutter, respectively. Fig. 5 compares with Fig. 6, the
lowest critical moving speed of the first-mode increases to c ¼ 0.104 and the second-order mode behaves divergent
instability in the case of c ¼ 0.2799 by the increase of the dimensionless coupled thermoelastic factor l.

Fig. 7 shows that the variation of the first-order mode dimensionless complex frequencies of the beam with the
dimensionless moving speed for r ¼ 20 and the different values of l. The real part of the first dimensionless complex
frequencies under c ¼ 0 and the critical speed of the first mode increase with the increase of the dimensionless coupled
Fig. 7. The first dimensionless complex frequencies vs. the dimensionless axially moving speed (r ¼ 20).

Fig. 8. The first three dimensionless complex frequencies vs. the dimensionless axially moving speed (r ¼ 10, l ¼ 0).
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thermoelastic factor l. In comparison with Fig. 5, the real part of the complex frequency in the Fig. 7 is greater than that in
the Fig. 5 in the case of c ¼ 0 and l ¼ 0.

4.3. Hinged-clamped beam

Figs. 8 and 9 indicate that the variation of the first three-order dimensionless complex frequencies of the beam with the
dimensionless moving speed for r ¼ 10, l ¼ 0 and l ¼ 0.1, respectively. Fig. 8 indicates that the first-order mode behaves
divergent instability at the c ¼ 0.131, when the dimensionless moving speed becomes c ¼ 0.222, the beam regains stability
in the first-order mode. The first-order mode couples the second-order mode until to c ¼ 0.232, that is the beam undergoes
coupled-mode flutter. In comparison with Figs. 8 and 9, respectively, it is observed that the dimensionless coupled
thermoelastic factor l ¼ 0.1, the real parts of the dimensionless complex frequencies under c ¼ 0 are greater than that in
the uncoupled case, so the critical moving speed of the first-order mode increases to c ¼ 0.149. The beam undergoes
coupled-mode flutter between the first-order mode and the second-order mode in the case of c ¼ 0.264.

Fig. 10 gives that the variation of the first-order mode dimensionless complex frequencies of the beam with the
dimensionless moving speed for r ¼ 20 and the different values of l. It can be seen that the real part of the dimensionless
complex frequencies increase with the increase of the dimensionless coupled thermoelastic factor l. In comparison with
Fig. 8, the real parts of the dimensionless complex frequencies for r ¼ 20 are smaller than that for r ¼ 10 in the same
conditions.
Fig. 9. The first three dimensionless complex frequencies vs. the dimensionless axially moving speed (r ¼ 10, l ¼ 0.1).

Fig. 10. The first mode dimensionless complex frequencies vs. the dimensionless axially moving speed (r ¼ 20).
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5. Conclusions

This paper analyzes flutter and divergence instabilities of the coupled thermoelstic axially moving beam, and deduces
that the instability type and critical moving speed of the beam are dependent on dimensionless coupled thermoelastic
factor l, the ratio of length to height r and boundary condition. Results of the analysis of the present study can be
summarized as follows:
(1)
 The real parts of the first three complex frequencies of the three kinds of different boundary conditions in the coupled
thermoelastic case la0 are greater than that in case of the uncoupling under the other conditions are constants. The
critical moving speed of the first-order mode of the moving beam undergoes divergent instability increases with the
increase of the dimensionless coupled thermoelastic factor l.
(2)
 When other parameters are invariable, with the increase of the ratio of length to height r, the real parts of the first three
complex frequencies decrease in the case of c ¼ 0, and the critical moving speed of the first-order mode of the moving
beam also decreases.
(3)
 For the three kinds of different boundary conditions, the first modes behave divergent instability firstly, but they are
different in the mode which undergoes coupled-mode flutter subsequently. The beam does not exhibit a coupled-mode
flutter with simply supported beam, while the clamped and hinged-clamped beam behave the coupled-mode flutter
between the first-order mode and second-order mode.
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